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ABSTRACT 
Accurate real-time knowledge of battery internal states and 

physical parameters is of the utmost importance for intelligent 

battery management. Electrochemical models are arguably 

more accurate in capturing phys ical phenomena inside the cells 

compared to their data-driven or equivalent circuit based 

counterparts. Moreover, consideration of the coupling between 

electrochemical and thermal dynamics can be potentially 

beneficial for accurate estimation. In this paper, a nonlinear 

adaptive observer design is presented based on a coupled 

electrochemical-thermal model for a Li-ion cell. The proposed 

adaptive observer estimates distributed Li-ion concentrations, 

lumped temperature and some electrochemical parameters 

simultaneously. The observer design is split into two separate 

parts to simplify the design procedure and gain tuning. These 

separate parts are designed based on Lyapunov’s stability 

analysis guaranteeing the convergence of the combined state-

parameter estimates. Simulation studies are provided to 

demonstrate the effectiveness of the scheme. 

 

NOMENCLATURE 

 

𝐴 Current collector area (cm
2
) 

𝐴  Cell surface area exposed to surroundings  (cm
2
) 

𝑎 
±  Specific surface area (cm

2
/ cm

3
) 

𝑐𝑒  Electrolyte phase Li-ion concentration (mol/cm
3
) 

𝑐 
± Solid phase Li-ion concentration (mol/cm

3
) 

𝑐 ,𝑒
±  Solid-phase Li-ion surface-concentration (mol/cm

3
) 

𝑐 ,𝑚𝑎𝑥
±  Solid-phase Li-ion max. concentration (mol/cm

3
) 

𝐷 
± Diffusion coefficient in solid phase (cm

2
/s) 

𝐷 ,𝑟𝑒𝑓
±

 Diffusion coefficient at   𝑟𝑒𝑓 (cm
2
/s) 

𝐸𝐾
±

 Activation Energy of diffusion coefficient (J/mol) 

𝐸𝐷 
±

 Activation Energy of reaction rate constant (J/mol) 

ℎ Heat transfer coefficient of the cell (W/cm
2
-K) 

𝐹  Faraday’s constant (C/mol) 

𝐼 Current (A) 

𝐾±  Reaction rate constant (cm
2.5

/mol
0.5

/s) 

𝐾𝑟𝑒𝑓
±

 Reaction rate constant at  𝑟𝑒𝑓 (cm
2.5

/mol
0.5

/s) 

𝐿± Length of the cell (cm) 

𝑟 Radial coordinate (cm) 

𝑅 Radius of solid active particle (cm) 

𝑅 Universal Gas Constant (J/mol-K) 

𝑅𝑓  Contact film resistance (Ω) 

𝑇 Temperature (K) 

𝑇𝑟𝑒𝑓  Reference temperature (K) 

𝑇∞ Temperature of cooling fluid (K) 

𝑈±  Open circuit potential (V) 

𝛼± Charge transfer coefficient  

𝜌 Cell density (g/cm
3
) 

𝑣 Cell volume (cm
3
) 

𝐶𝑝 Specific heat capacity (J/g-K) 

Superscript 

± positive/negative electrode 

 

 

INTRODUCTION 
 Li-ion batteries are becoming increasingly popular in 

electrified transportation and stationary renewable energy 

storage applications due to their beneficial features such as 

Proceedings of the ASME 2014 Dynamic Systems and Control Conference 
DSCC2014 

October 22-24, 2014, San Antonio, TX, USA 

DSCC2014-5986

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 05/30/2015 Terms of Use: http://asme.org/terms



 2 Copyright © 2014 by ASME 

higher power-to-weight ratio, low self-discharge and less 

environmental impact. However, safety and reliability are still 

key concerns for this technology. One aspect of overcoming 

these issues is proper design of Battery Management Systems 

(BMS), which require precise knowledge of battery internal 

information like State-of-Charge (SOC) and State-of-Health 

(SOH). 

The main challenge for meeting these requirements is that, 

in general, the only available information in real-time is 

boundary measurement of voltage, current and temperature. 

This fact leads to the necessity of reliable estimation algorithms 

that determine the internal information in the Li-ion cells from 

these limited measurements and available models . Moreover, 

there are two specific challenges in SOC and SOH estimation 

of Li-ion cells. The first arises from the spatially distributed 

nature of Li-ion concentrations inside the electrodes. The 

second is parametric uncertainty as the parameters vary with 

Li-ion chemistry, cell-to-cell manufacturing variability and time 

(including shelf-time). In this paper, we address these 

challenges. Specifically, we propose an electrochemical-

thermal model-based adaptive algorithm for online 

simultaneous SOC and parameter estimation. In addition to 

improving the accuracy of SOC estimation, online parameter 

estimates can be used as State-of-Health (SOH) indicators. 

  The different adaptive estimation algorithms proposed for 

Li-ion batteries can be broadly classified based on type of 

model used: 1) Data-driven model [2],[3], 2) Equivalent circuit 

model (ECM) [4],[5],[6], and 3) Electrochemical model. 
Although data-driven and ECM based approaches are simple in 

implementation and design, the downsides are extensive 

parameterization and lack of physical meaning of the 

parameters. 

Electrochemical model-based approaches, built on porous 

electrode and concentrated solution theories, are more accurate 

compared to conventional data-driven or ECM models [7]. 

However, full-order electrochemical model (also known as 

pseudo-two-dimensional (P2D) model) consists of nonlinear 

coupled Partial Differential Equations (PDE) [8]. The complex 

structure of the P2D model has spurred different model 

reductions in the literature for subsequent use in estimator 

design. For example, a residue grouping with a Kalman filter 

was used in [9] and a constant electrolyte concentration 

assumption with output injection observer was used in [10]. A 

single Particle Model (SPM) with the electrodes approximated 

as spherical particles was used for SOC estimator design in 

[11], [12], [13]. The present authors proposed SPM based two 

nonlinear observer designs for the SOC estimation in [14]. 

Although the SOC estimation problem is well investigated 

for electrochemical models, adaptive estimation or the problem 

of simultaneous state and parameter estimation is relatively less 

explored. Some of the existing works use multi-rate particle 

filtering (PF) approach [15], unscented Kalman filter (UKF) 

approach [16], iterated extended Kalman filter (IEKF) approach 

[17],[18]. However, it is difficult to theoretically verify the 

stability properties of the estimators designed by 

UKF/PF/IEKF. In [19], an adaptive PDE observer framework is 

presented. However, combined stability properties of the state 

and parameter estimators are not verified analytically. The 

authors of the present paper proposed a sliding mode observer 

based adaptive approach in [20] for estimation of SOC and 

physical parameters (namely, diffusion coefficient and film 

resistance). However, the approach requires the initial value of 

film resistance to be known with certain accuracy.  

Almost all of the adaptive estimation approaches cited 

above consider only electrochemical dynamics of the cell 

ignoring the thermal dynamics. However, in reality there is a 

bi-directional coupling between the electrochemical and 

thermal dynamics of a Li-ion cell. In [10] and [21], numerical 

and experimental results of SOC observer with coupled 

electrochemical- thermal dynamics, has shown that inclusion of 

the thermal model in the observer has a significant potential to 

improve the estimation accuracy. This also makes sense from 

physical point of view due to the bi-directional coupling 

described as follows: in electrochemical model the open circuit 

potential and some parameters are affected by temperature 

changes whereas in the thermal model, the electrochemical 

overpotential and open circuit potential contribute to heat 

generation [25].  

To summarize, most of the current adaptive estimation 

schemes have the following issues 1) thermal coupling is not 

considered along with electrochemical model, 2) there is a lack 

of theoretical verification of convergence for the combined 

state-parameter estimation schemes.  

In this paper we address these issues by proposing a 

Lyapunov-based nonlinear adaptive observer design based on a 

combined electrochemical-thermal model of a Li-ion cell. We 

also provide an analytical proof of convergence for the overall 

adaptive scheme combining state and parameter estimators. We 

utilize single particle electrochemical model (SPM) along with 

lumped thermal dynamics [22]. The parametric uncertainty in 

the model is assumed to be arisen from unknown diffusion 

coefficient, film resistance [23] and active material volume 

fraction. These three parameters will be estimated along with 

the SOC using adaptive laws and can subsequently be used as 

SOH indicators. As will be detailed below, the proposed 

approach is simple in design and implementation and is 

computationally efficient.  

The rest of the paper is organized as follows. In the next 

section, the adopted electrochemical and thermal modeling of 

Li-ion cell is discussed. Then, detailed description of the 

adaptive scheme is provided along with systematic approaches 

for the selection of observer gains . Next, results and discussions 

are provided based on simulation studies. Finally, the 

concluding remarks are summarized. 

LI-ION CELL ELECTROCHEMICAL-THERMAL MODEL 
A reduced order electrochemical model of Li-ion cell 

known as Single Particle Model (SPM) [11], [12] is adopted 

here for observer design. Essentially, SPM consists of two 

linear diffusion PDEs for Li-ion mass conservation in both 

electrodes given by (1) and nonlinear voltage map derived from 
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Butler-Volmer kinetics given by (2), assuming volume-

averaged current along the electrodes. 

 

𝜕𝑐 
±

𝜕𝑡
=
𝐷 
±(𝑇)

𝑟 
𝜕

𝜕𝑟
(𝑟 

𝜕𝑐 
±

𝜕𝑟
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𝜕𝑟
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𝜕𝑐 

±
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𝑟  

=
±𝐼
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±(𝑇)𝐴𝐿±
 

 

 

(1) 

𝑉

=
𝑅𝑇

𝛼 𝐹
𝑠𝑖𝑛ℎ  

(

 
𝐼

2𝑎 
 𝐴𝐿 𝐾 (𝑇) √𝑐𝑒𝑐 ,𝑒

 (𝑐 ,𝑚𝑎𝑥
 − 𝑐 ,𝑒

 ))

 

−
𝑅𝑇

𝛼 𝐹
𝑠𝑖𝑛ℎ  

(

 𝐼

2𝑎 
 𝐴𝐿 𝐾 (𝑇) √𝑐𝑒𝑐 ,𝑒

 (𝑐 ,𝑚𝑎𝑥
 − 𝑐 ,𝑒

 ))

 

+ 𝑈 (𝑐 ,𝑒
 , 𝑇) − 𝑈 (𝑐 ,𝑒

 , 𝑇) −𝑅𝑓𝐼 
(2) 

 

where 𝑈  and 𝑈  are the open circuit potentials as functions of  

Li-ion surface concentration and temperature, 𝑐 
± is the Li-ion 

concentration of the positive and negative electrode, 𝑉 is the 

output voltage and 𝐼 is the input current. The reader may refer 

to nomenclature above for the definitions of the rest of the 

variables.  

Along with the electrochemical SPM model, the following 

lumped thermal model derived from the energy balance of the 

cell, is considered [22] and is given by: 

 

𝜌𝑣𝐶𝑝
 𝑇

 𝑡
= 𝐼 (𝑈 (𝑐 ,𝑒

 ,𝑇) −𝑈 (𝑐 ,𝑒
 , 𝑇) − 𝑉

− 𝑇(
𝜕𝑈 

𝜕𝑇
−
𝜕𝑈 

𝜕𝑇
)) − ℎ𝐴 (𝑇 − 𝑇∞) 

 

 

(3) 

 

where 𝑇 is the temperature and 
𝜕𝑈+

𝜕𝑇
 and 

𝜕𝑈−

𝜕𝑇
 are the changes in 

open circuit potentials due to temperature change. Note that, 
𝜕𝑈±

𝜕𝑇
 are functions of  𝑐 

± only [22]. The previously mentioned 

coupling between the electrochemical and thermal model can 

be seen in (1), (2) and (3). The temperature affects the open 

circuit potential and overpotential terms in the voltage 

expression (2) whereas changes in the open circuit potential 

contribute to the heat generation in (3). Moreover, some 

electrochemical parameters have Arrhenius’ correlation type 

dependence on temperature. In this study, we assume that the 

solid phase diffusion coefficients (𝐷 
±) and the reaction rate 

constants (𝐾±) show such dependence [22], as given by: 

 

𝐾±(𝑇) = 𝐾𝑟𝑒𝑓
± exp (

𝐸𝐾
±

𝑅
(
1

𝑇
−

1

𝑇𝑟𝑒𝑓
)) 

𝐷 
±(𝑇) = 𝐷 ,𝑟𝑒𝑓

± exp (
𝐸𝐷 
±

𝑅
(
1

𝑇
−

1

𝑇𝑟𝑒𝑓
)) 

 

 

(4) 

where 𝑇𝑟𝑒𝑓  is reference temperature, 𝐾𝑟𝑒𝑓
±

 and 𝐷 ,𝑟𝑒𝑓
±

 are the 

parameter values at that reference temperature. In this study we 

use the following approximation of the open circuit potential 

expression [22]: 

 

𝑈±(𝑐 ,𝑒
± ,𝑇) ≈ 𝑈±(𝑐 ,𝑒

± ,𝑇𝑟𝑒𝑓) +
𝜕𝑈±

𝜕𝑇
(𝑇 − 𝑇𝑟𝑒𝑓 ) 

(5) 

MODEL REDUCTION & FINITE-DIMENSIONAL 
APPROXIMATION 

One of the challenges in Li-ion cell estimation is weak 

observability of SPM states via differential voltage 

measurement [12]. Different approaches have been proposed in 

literature to resolve this issue. In [12], Li-ion concentration in 

the negative electrode is computed using an algebraic function 

of positive electrode concentration based on stoichiometry 

points of the electrodes. In [13], the positive electrode 

concentration is approximated as an algebraic function of the 

negative electrode concentration based on conservation of Li-

ions. In this paper, we follow the approach in [13] for model 

reduction to get an observable single PDE describing negative 

electrode diffusion dynamics along with a nonlinear output 

voltage map. 

Next, we attempt to get a finite dimensional approximation 

of the reduced PDE using method of lines technique by 

approximating the spatial derivatives with finite central 

difference method. An illustration of SPM with discretization is 

shown in Fig. 1. 

 
Figure 1: Illustration of SPM with Discretized Nodes  

 The resulting ODEs are given as follows: 

 

𝑐̇  = −3𝑎𝑐  + 3𝑎𝑐   

𝑐̇ 𝑚 = (1 −
1

𝑚
) 𝑎𝑐 (𝑚  ) − 2𝑎𝑐 𝑚

+ (1 +
1

𝑚
) 𝑎𝑐 (𝑚  )  

𝑐̇ 𝑀 = (1 −
1

𝑀
)𝑎𝑐 (𝑀  ) − (1 −

1

𝑀
)𝑎𝑐 𝑀

− (1 +
1

𝑀
)𝑏𝐼  

 

 

 

(6) 
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with 𝑚 = 1, … , (𝑀 −1), discretization step Δ = 𝑅/𝑀, 

𝑎 = 𝐷 
 /Δ , 𝑏 = 1/𝑎 

 𝐹Δ𝐴𝐿 . Bulk SOC of the cell, which is 

related to the energy capacity, can be computed by volume 

averaging the node concentrations (𝑐 𝑖). The surface 

concentration 𝑐 𝑀  describes the surface SOC, which is related 

to instantaneous power capacity. The voltage equation can be 

derived from (2) by substituting 𝑐 ,𝑒
 = 𝑐𝑠𝑀  and 𝑐 ,𝑒

 =  𝑘1𝑐𝑠𝑀 +
 𝑘2  where 𝑘  and 𝑘  are constants in the algebraic relationship 

between positive and negative electrode Li-ion concentrations. 

These constants can be derived considering the conservation of 

Li-ions [13].  

The cell thermal dynamics given by (3) is already in 

lumped ODE form and will be used as it is. 

ESTIMATION PROBLEM 
 

State-space Model Formulation & Analysis 

The finite-dimensional state-space model for the Li-ion 

cell can be assembled from (6) and (3) along with the output 

voltage map is formed using (2). A compact form of the state-

space model is: 

 

𝑥̇ = 𝜃𝑓 (𝑥 )𝐴𝑥 + 𝐵𝑢 

𝑥̇ = 𝑢𝑓 (𝑥 𝑀 ,𝑥 ,𝑦 ) − 𝑘(𝑥 − 𝑥  ) 

𝑦 = ℎ(𝑥 𝑀 ,𝑥 ,𝑢) − 𝑅𝑓𝑢 

𝑦 = 𝑥  

 

 

(7) 

where 𝑥 = [𝑐  , … , 𝑐 𝑀]
𝑇 ∈ 𝑅𝑀  is the state vector describing 

Li-ion concentrations at various nodes, 𝑥 𝑀 = 𝑥 (𝑀) = 𝑐 𝑀 ∈
𝑅 is the surface concentration state, 𝑥 ∈ 𝑅 is temperature state 

and 𝑥  ∈ 𝑅 is the coolant/ambient temperature, 𝜃 =

𝐷 ,𝑟𝑒𝑓
 /Δ ∈ 𝑅 is the scalar parameter related to the diffusion 

coefficient, 𝑅𝑓 ∈ 𝑅 is the film resistance, 𝑦 ∈ 𝑅 is the 

measured voltage, 𝑦 ∈ 𝑅 is the measured temperature, 𝑢 ∈ 𝑅 

is the input current, 𝑓 : 𝑅 → 𝑅 is a scalar function of the 

temperature given by the exponential term in Arrhenius 

equation (4), 𝐴 ∈ 𝑅𝑀×𝑀 is the tri-diagonal matrix formed from 

(6), 𝐵 = [0, … ,0, 𝐵𝑀]
𝑇 ∈ 𝑅𝑀×  is a column vector formed by 

(6) where  𝐵𝑀 = 1/𝑎 
 𝐹Δ𝐴𝐿 , 𝑓 : 𝑅

3 → 𝑅 is a scalar function 

formed by (3),  𝑘 ∈ 𝑅 is a scalar parameter, ℎ: 𝑅3 → 𝑅  is a 

scalar function derived from voltage map. Note that, the zero-th 

node 𝑐   dynamics is neglected in (7) as keeping that dynamics 

leads to the unobservability. However, removing 𝑐   dynamics 

from the model does not lead to any information loss as it can 

be easily reconstructed from 𝑐   information. 

We make the following observations of the system 

described in (7) which will be exploited later for design: 

 

Observation I: The 𝐴 matrix in (7) is a negative semi-definite 

matrix with eigen-values 𝜆(𝐴) = [0, −𝜆 , . . , −𝜆𝑀  ]
𝑇 where  

𝜆 𝑖 > 0. 

Observation II: The functions 𝒇𝟏 , 𝒇𝟐  and 𝒉 are bounded 

within the operating range of the cell which means the function 

outputs are finite given the function arguments are finite. 

Moreover, the function 𝒇𝟏  is always positive. 

Observation III: The states of (7) are locally observable from 

the outputs as can be verified from local linearization of (7) at 

different points of the operating regime. 

 

Observation IV: The output function 𝑦  is a strictly increasing 

function of the surface concentration state 𝑥 𝑀 given any input 

current and temperature. The trend of output voltage (𝑦 ) as a 

function of 𝑥 𝑀 is given in Fig. 2 for a given current and 

temperature. Based on this observation, the following fact can 

be inferred: In the  𝑥 𝑀  space, given any constant 𝑢 = 𝑢∗ and 

𝑥 = 𝑥 
∗, for two different values  𝑥 𝑀

( )
 and 𝑥 𝑀

( )
, we have 

𝑦 
( )

= ℎ( )(𝑥 𝑀
( )
,𝑥 
∗ ,𝑢∗) − 𝑅𝑓𝑢

∗ and 𝑦 
( )
= ℎ( )(𝑥 𝑀

( )
,𝑥 
∗ ,𝑢∗) −

𝑅𝑓𝑢
∗. Now, using the strictly increasing property, we can write 

that: 

𝑠𝑔𝑛(𝑦 
( )
− 𝑦 

( )) = 𝑠𝑔𝑛(𝑥 𝑀
( )
− 𝑥 𝑀

( )) 

⇒ 𝑠𝑔𝑛 (ℎ( )(𝑥 𝑀
( )
,𝑥 
∗ ,𝑢∗)− ℎ

( )(𝑥 𝑀
( )
,𝑥 
∗ ,𝑢∗))

= 𝑠𝑔𝑛(𝑥 𝑀
( )
− 𝑥 𝑀

( )) 

 

 
Figure 2: Output Voltage (𝒚𝟏) as a Function of Surface 

Concentration (𝒙𝟏𝑴) 

Estimation Problem Formulation 

State Estimation: The state estimation problem consists of 

estimating elements of 𝑥 , which are the Li-ion concentrations 

at various nodes and temperature state 𝑥 . Note that, 𝑥 𝑀  

indicates surface SOC. Bulk SOC can be computed from the 

full state vector 𝑥  information using the volume averaging 

formula: 

𝑆𝑂𝐶𝐵𝑢𝑙𝑘 =
1

4𝜋𝑅3𝑐𝑠,𝑚𝑎𝑥
−

∫ 4𝜋𝑟 𝑐𝑠
−(𝑟, 𝑡) 𝑟

 

 

 (8) 

 

Parameter Estimation: In this work, we assume the model 

uncertainty arises from the following parameters. 

Diffusion coefficient: This leads to uncertain θ in (7). 

Film resistance: This leads to uncertain 𝑅𝑓  in (7). 

Active material volume fraction of negative electrode: This 

leads to uncertainty in active surface area (𝑎 
 ) as 𝑎 

 = 3𝜀 /𝑅 

where 𝜀  is the active material volume fraction. Note that, 𝑎 
  is 

present both in matrix 𝐵 and function ℎ in (7). However, we 

observed via sensitivity analysis that error in 𝑎 
  parameter has 

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 05/30/2015 Terms of Use: http://asme.org/terms



 5 Copyright © 2014 by ASME 

negligible effect on function ℎ whereas it significantly impacts  

the 𝐵 matrix. Therefore, uncertainty due to 𝑎 
  is assumed to be 

translated into uncertainty in 𝐵 matrix only or specifically in 

𝐵𝑀  which is the only non-zero element in 𝐵. This is similar to 

the uncertainty in the boundary input coefficient assumed in 

[19]. 

These three parameters need to be estimated along with the 

states. Note that, besides improving the accuracy of the state 

estimates, the information on these parameters can also be used 

as an indicator for the SOH of the cell [23], [24]. 

ADAPTIVE OBSERVER DESIGN 
The design goal of the adaptive observer is to estimate the 

states (𝑥 , 𝑥 ) and uncertain parameters (θ, 𝑅𝑓 , 𝐵𝑀  ) using 

available measurements (𝑦 , 𝑦 , 𝑢). Except for the three 

uncertain parameters mentioned above, all the other model 

parameters and functions are assumed to be known. 

 

 
Figure 3: Adaptive Observer Scheme 

A schematic of the overall adaptive observer scheme is 

shown in Fig. 3. In this work, we split the overall observer 

design into two parts. The Observer I computes estimates of the 

surface concentration (𝑥 𝑀), temperature (𝑥 ) and film 

resistance parameter (𝑅𝑓) utilizing the measurements of voltage 

(𝑦 ) and temperature (𝑦 ). The Observer II uses the estimates of 

surface concentration (𝑥 𝑀) and temperature (𝑥 ) from the 

Observer I and subsequently estimates the full concentration 

state vector (𝑥 ), diffusion coefficient (θ) and B matrix 

parameter (𝐵𝑀). Note that, in Observer II, the measured 

temperature value can be used instead of the estimated 

temperature. However, in this case we are using the estimated 

temperature which is a filtered version of the noisy measured 

temperature. 

The motivation behind splitting the design into two parts 

instead of designing the full order observer at once lies in the 

simplification of the design procedure. Essentially, the full state 

and parameter vector is separated into two parts. The first part 

consists of the surface concentration and temperature states 

which are directly related to the available measurements 

(𝑦 , 𝑦 ) and film resistance parameter which is multiplied by 

the measured current; the second part consists of the rest of the 

states and parameters. Then the design is done in a cascaded 

manner where the Observer I estimates the first part and feeds it 

to the Observer II which subsequently estimates the second 

part. Apart from simplification of design, this cascaded 

approach also makes tuning of the observer gains easier.  

 
Design of Observer I 

In this part of the design, we use a reduced-order system 

considering the partial dynamics given in (7). The partial 

dynamics can be written as: 

 

𝑅̇𝑓 = 0 

𝑥̇ 𝑀 = 𝜃𝑓 (𝑥 )𝐴 𝑥 (𝑀  ) + 𝜃𝑓 (𝑥 )𝐴 𝑥 𝑀 + 𝐵𝑀𝑢 

𝑥̇ = 𝑢𝑓 (𝑥 𝑀 ,𝑥 ,𝑦 ) − 𝑘(𝑥 − 𝑥  ) 

𝑦 = ℎ(𝑥 𝑀 ,𝑥 ,𝑢) − 𝑅𝑓𝑢 

𝑦 = 𝑥  

 

 

(9) 

 

where 𝑥 (𝑀  ) ∈ 𝑅
𝑀   is the rest of the state vector  𝑥  except 

𝑥 𝑀, 𝑅𝑓  is the unknown parameter augmented in the state 

vector, 𝐴  and 𝐴  are the partitioned matrices originating from 

extracting the last row of the 𝑥  dynamics in (7). Note that, the 

reduced order system (9) is an uncertain system due to 

uncertainties in 𝑥 (𝑀  ), 𝜃 and 𝐵𝑀 .  

The form of the observer is chosen as: 

 

𝑥̇ 𝑀 = 𝜃𝑓 (𝑥 )𝐴 𝑥 (𝑀  ) + 𝜃𝑓 (𝑥 )𝐴 𝑥 𝑀 + 𝐵̂𝑀𝑢

+ 𝐿 (𝑦 − 𝑦 ) 

𝑥̇ = 𝑢𝑓 (𝑥 𝑀 ,𝑥 ,𝑦 ) − 𝑘(𝑥 − 𝑥  )+ 𝐿 (𝑦 − 𝑦 ) 

𝑦 = ℎ(𝑥 𝑀 ,𝑥 ,𝑢) − 𝑅̂𝑓𝑢 

𝑦 = 𝑥  

 

 

(10) 

 

The error dynamics can be written as: 

 

𝑥̇ 𝑀 = 𝐹 − 𝐿 𝑦̃  

𝑥̇ = 𝑢𝑓 − 𝑘𝑥 − 𝐿 𝑦  

𝑦 = ℎ̃ − 𝑅̃𝑓𝑢 

𝑦 = 𝑥  

 

 

(11) 

where 

𝐹 = 𝜃𝑓 (𝑥 )𝐴 𝑥 (𝑀  ) +𝜃𝑓 (𝑥 )𝐴 𝑥 𝑀 − 𝜃𝑓 (𝑥 )𝐴 𝑥 (𝑀  )

− 𝜃𝑓 (𝑥 )𝐴 𝑥 𝑀 + 𝐵̃𝑀𝑢 

ℎ̃ = ℎ(𝑥 𝑀 ,𝑥 ,𝑢) − ℎ(𝑥 𝑀 , 𝑥 ,𝑢) 

𝑓 = 𝑓 (𝑥 𝑀 ,𝑥 ,𝑦 ) − 𝑓 (𝑥 𝑀 ,𝑥 ,𝑦 ) 

𝑅𝑓 = 𝑅𝑓 − 𝑅𝑓, 𝐵̃𝑀 = 𝐵𝑀 − 𝐵̂𝑀 , 𝑥 = 𝑥 − 𝑥 ,𝑥 = 𝑥 − 𝑥  

𝑦 = 𝑦 − 𝑦̂ , 𝑦 = 𝑦 − 𝑦̂  

and 𝐿 , 𝐿  are observer gains to be determined. 

 

To analyze the stability of the error dynamics, the 

following Lyapunov function candidate has been chosen. 

 

𝑉 =
1

2
𝑥 𝑀
 +

1

2
𝑥 
 +

1

2
𝑅̃𝑓
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Taking the derivative of the Lyapunov function candidate, 

𝑉̇ = 𝑥 𝑀 𝑥̇ 𝑀 + 𝑥 𝑥̇ + 𝑅𝑓𝑅̇̃𝑓 

⇒ 𝑉̇ = 𝑥 𝑀(𝐹 −𝐿 𝑦 ) + 𝑥 (𝑢𝑓 − 𝑘𝑥 − 𝐿 𝑦 ) − 𝑅̃𝑓𝑅̇̂𝑓  

⇒ 𝑉̇ = 𝑥 𝑀 (𝐹 − 𝐿 (ℎ̃ − 𝑅𝑓𝑢)) + 𝑥 (𝑢𝑓 − 𝑘𝑥 − 𝐿 𝑦 )

− 𝑅𝑓𝑅̇𝑓 

⇒ 𝑉̇ = 𝑥 𝑀(𝐹 − 𝐿 ℎ̃) + 𝐿 𝑥 𝑀𝑅̃𝑓𝑢 

+𝑥 (𝑢𝑓 − 𝑘𝑥 − 𝐿 𝑦̃ ) −𝑅𝑓𝑅̇𝑓  

 

According to Observation IV we have 𝑠𝑔𝑛(ℎ̃) = 𝑠𝑔𝑛(𝑥 𝑀) 

which implies that 𝑥 𝑀ℎ̃ > 0 or equivalently, 𝑥 𝑀ℎ̃ = |𝑥 𝑀||ℎ̃|. 

 

Note: Here ℎ̃ = ℎ(𝑥 𝑀 ,𝑥 ,𝑢) − ℎ(𝑥 𝑀 , 𝑥 ,𝑢)  is not only a 

function of  𝑥 𝑀  but also a function of 𝑥 . However, it is 

observed that effect of temperature on ℎ is much less than that 

of the surface concentration 𝑥 𝑀 . Moreover, in reality the 

temperature measurement is always available which means 𝑥  
will always be of smaller magnitude, therefore having 

negligible effect on ℎ̃. Therefore, we can safely apply 

Observation IV in this case even with temperature estimation 

error 𝑥 ≠ 0 identically. 

 

Using the above observation and 𝑦 = 𝑥 , 𝑉̇ can be written as: 

 

𝑉̇ = (𝑥 𝑀𝐹 − 𝐿 |𝑥 𝑀||ℎ̃|) + (𝑢𝑓 𝑥 − (𝑘 + 𝐿 )𝑥 
 )

+ 𝐿 𝑥 𝑀𝑅̃𝑓𝑢 − 𝑅̃𝑓𝑅̇𝑓   

Using the inequality, 𝑎𝑏 ≤ |𝑎𝑏| = |𝑎||𝑏|, 
𝑉̇ ≤ (|𝑥 𝑀||𝐹 | − 𝐿 |𝑥 𝑀||ℎ̃|) 

+(|𝑢𝑓 ||𝑥 |− (𝑘 + 𝐿 )|𝑥 |
 )+ 𝐿 𝑥 𝑀𝑅̃𝑓𝑢 − 𝑅𝑓𝑅̇𝑓 

⇒ 𝑉̇ ≤ |𝑥 𝑀|(|𝐹 | − 𝐿 |ℎ̃|)  

+|𝑥 |(|𝑢𝑓 | − (𝑘 + 𝐿 )|𝑥 |)+ 𝐿 𝑥 𝑀𝑅̃𝑓𝑢− 𝑅𝑓𝑅̇𝑓 

 

Now we can choose the following adaptive law for the 

estimation of film resistance: 

𝑅̇𝑓 = −𝐿3𝑠𝑔𝑛(𝑢)𝑠𝑔𝑛(𝑦 ) ⇒ 𝑅̇𝑓 = −𝐿3𝑠𝑔𝑛(𝑢)𝑠𝑔𝑛(ℎ̃ − 𝑅𝑓𝑢)  

Therefore, the 𝑉̇ equation becomes: 

 

𝑉̇ ≤ |𝑥 𝑀|(|𝐹 | − 𝐿 |ℎ̃|) 

+|𝑥 |(|𝑢𝑓 | − (𝑘 + 𝐿 )|𝑥 |) 

+𝐿 𝑥 𝑀𝑅̃𝑓𝑢 + 𝐿3𝑅̃𝑓𝑠𝑔𝑛(𝑢)𝑠𝑔𝑛(ℎ̃ −𝑅𝑓𝑢)  
(12) 

 

Considering the first term in right hand side of (12), if we 

choose sufficiently high positive 𝐿 , |𝑥 𝑀|(|𝐹 | − 𝐿 |ℎ̃|) will 

be negative given the condition 𝐿 > |𝐹 |/|ℎ̃|. This means that 

|𝑥 𝑀| will always decrease till this condition is true. However, 

𝑥 𝑀 will not go to zero as it will stay on some bounded 

manifold in that error space that is determined by the value of  

𝐿  and the magnitude of |𝐹 |. 

A similar argument can be made for the second term in 

right hand side of (12). Based on the selection of some high 

positive 𝐿 , |𝑥 | will decrease till the condition 𝐿 > |𝑢𝑓 |/|𝑥 | 

is true. Subsequently, |𝑥 | will stay on some bounded manifold 

determined by the value of  𝐿  and magnitude of |𝑢𝑓 |. 

Now consider the third term on the right hand side of (12). 

Under the condition |ℎ̃| < |𝑅̃𝑓𝑢|, we can write 𝑠𝑔𝑛(ℎ̃ −

𝑅𝑓𝑢) = 𝑠𝑔𝑛(−𝑅𝑓𝑢) = −𝑠𝑔𝑛(𝑅̃𝑓)𝑠𝑔𝑛(𝑢) . This makes the 

third term, 𝐿 𝑥 𝑀𝑅̃𝑓𝑢 + 𝐿3𝑅𝑓𝑠𝑔𝑛(𝑢)𝑠𝑔𝑛(ℎ̃ − 𝑅𝑓𝑢) =

𝐿 𝑥 𝑀𝑅̃𝑓𝑢 − 𝐿3𝑅̃𝑓𝑠𝑔𝑛(𝑅̃𝑓). Using the inequality, 𝑎𝑏 ≤ |𝑎𝑏| =
|𝑎||𝑏|, the above expression becomes |𝑅𝑓|(𝐿 |𝑥 𝑀||𝑢| − 𝐿3). 

Selection of some high positive 𝐿3 will make |𝑅𝑓| to decrease 

till one of the two conditions 𝐿 |𝑥 𝑀||𝑢| < 𝐿3 or |ℎ̃| < |𝑅̃𝑓𝑢|  is 

true. Similar to other error variables, |𝑅̃𝑓| will not go to zero 

but stay on some bounded manifold in that error space that is 

determined by the values of  𝐿3, 𝐿  and magnitude of |𝑥 𝑀| and 

|ℎ̃|. Note that, convergence of 𝑅̃𝑓  depends on 𝑢 ≠ 0 condition. 

Therefore, to make 𝑅𝑓 to go to a certain bounded value some 

persistence of input current excitation is required. 

From this Lyapunov analysis, we can conclude that based 

on some selection of high observer gains, the errors 𝑥 𝑀, 𝑥  and 

𝑅𝑓 will go to some bounded manifold. However, it can be 

shown that for sufficiently high values of 𝐿  and 𝐿 , the steady-

state value of  𝑥 𝑀  and 𝑥  can be made negligibly small. These 

estimates 𝑥 𝑀 and 𝑥  will be used in the Observer II with the 

assumption of negligibly small steady-state values of 𝑥 𝑀 and 

𝑥 . 
 

Note: The film resistance (𝑅𝑓 ) estimate convergence depends 

on nonzero current (𝑢 ≠ 0). This is also evident from (9) as 

film the resistance is entering into the output equation as 

voltage drop 𝑅𝑓𝑢. 

 
Design of Observer II 

In this part of the design we consider the whole Li-ion 

concentration dynamics of 𝑥  with unknown parameters 𝜃 and 

𝐵𝑀 . Here we consider estimate of 𝑥 𝑀  and 𝑥  from the 

Observer I as available measurements. This partial dynamics 

can be written as: 

 

𝜃̇ = 0 

𝐵̇𝑀 = 0 
𝑥̇ = 𝜃𝑓 (𝑥 )𝐴𝑥 + [0, … ,0, 𝐵𝑀]

𝑇𝑢 
𝑦 𝑀 = 𝑥 𝑀 = 𝐶𝑥  where 𝐶 = [0, … ,0, 1] 

(13) 

 

where 𝑥  is the whole Li-ion concentration vector as discussed 

before, 𝜃 and 𝐵𝑀  are the unknown parameters augmented in the 

state vector, temperature 𝑥  is assumed to be known from the 

previous step,  𝑦 𝑀  is 𝑥 𝑀 where we assume the steady-state 

error is negligible due to proper selection of gains in the 

Observer I.  

The observer form is chosen as: 
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𝑥̇ = 𝜃𝑓 (𝑥 )𝐴𝑥 + [0, . ,0, 𝐵̂𝑀]
𝑇𝑢 + 𝐿4(𝑦 𝑀 − 𝑦 𝑀 ) 

𝑦 𝑀 = 𝐶𝑥   
(14) 

 

The corresponding error dynamics is given as: 

 

𝑥̇ = 𝜃𝑓 (𝑥 )𝐴𝑥 − 𝜃𝑓 (𝑥 )𝐴𝑥 + [0, . ,0, 𝐵̂𝑀]
𝑇𝑢

− 𝐿4𝑦 𝑀  
𝑦 𝑀 = 𝐶𝑥   

(15) 

 

To analyze the stability of the error dynamics, the following 

Lyapunov function candidate has been chosen. 

 

𝑉 =
 

 
𝑥 
𝑇𝑥 +

 

 
𝐾 𝜃

 +
 

 
𝐾 𝐵̃𝑀

   (𝐾 , 𝐾 > 0) 

 

Taking the derivative of the Lyapunov function candidate, (we 

drop the argument of the function 𝑓  for convenience) 

 

𝑉̇ = 𝑥 
𝑇 𝑥̇̃ + 𝐾 𝜃𝜃̇ + 𝐾 𝐵̃𝑀 𝐵̇̃𝑀  

⇒ 𝑉̇ = 𝑥 
𝑇(𝜃𝑓 𝐴𝑥 − 𝜃𝑓 𝐴𝑥 − 𝐿4𝑦 𝑀) + 𝑥 

𝑇[0, . . , 𝐵̃𝑀 ]
𝑇𝑢

+ 𝐾 𝜃𝜃̇ + 𝐾 𝐵̃𝑀 𝐵̇̃𝑀  

⇒ 𝑉̇ = 𝑥 
𝑇(𝜃𝑓 𝐴𝑥 + 𝜃𝑓 𝐴𝑥 − 𝐿4𝐶𝑥 )+ 𝑦 𝑀𝐵̃𝑀𝑢 + 𝐾 𝜃𝜃̇

+ 𝐾 𝐵̃𝑀 𝐵̇̃𝑀 

⇒ 𝑉̇ = 𝜃𝑓 𝑥 
𝑇𝐴𝑥 − 𝑥 

𝑇𝐿4𝐶𝑥 + 𝑥 
𝑇 𝜃̃𝑓 𝐴𝑥 + 𝐾 𝜃𝜃̇ + 𝑦 𝑀 𝐵̃𝑀𝑢

+ 𝐾 𝐵̃𝑀 𝐵̇̃𝑀 

 

Using the assumption of slowly varying parameters(𝜃̇, 𝐵̇𝑀 = 0),   

 

𝑉̇ = (𝜃𝑓 𝑥 
𝑇𝐴𝑥 − 𝑥 

𝑇𝐿4𝐶𝑥 ) 

+𝜃 (𝑓 𝑥 
𝑇𝐴𝑇𝑥 − 𝐾 𝜃̇) + 𝐵̃𝑀 (𝑦 𝑀𝑢 −𝐾 𝐵̇̂𝑀) (16) 

 

Now, we choose the following adaptive laws, 𝐵̇̂𝑀 = 𝑢𝑦 𝑀/𝐾  

and 𝜃̇ = 𝐿5𝑦 𝑀/𝐾  where 𝐿5 is yet to determined. The third 

term on right hand side of (16) vanishes. Consider the second 

term on right hand side of (16): 

 

𝜃(𝑓 𝑥 
𝑇𝐴𝑇 𝑥̃ − 𝐿5𝑦 𝑀) 

= 𝜃(𝑓 𝑥 
𝑇𝐴𝑇𝑥 − 𝐿5𝐶𝑥 ) 

= (𝑓 𝑥 
𝑇𝐴𝑇 − 𝐿5𝐶)𝑥 𝜃̃ 

 

To make the above term zero, the following conditions should 

be satisfied: 

 

 𝑓 𝑥 
𝑇𝐴𝑇 = 𝐿5𝐶 ⇒ 𝑓 𝑥 

𝑇𝐴𝑇𝐶𝑇 = 𝐿5𝐶𝐶
𝑇 

⇒ 𝐿5 = 𝑓 𝑥 
𝑇𝐴𝑇𝐶𝑇, as 𝐶𝐶 𝑇 = 1. 

Therefore, the adaptation law becomes 𝜃̇ =
𝑓 𝑥 

 𝐴 𝐶 𝑦̃  

𝐾 
. 

The choice of these adaptation laws leads to the following 

Lyapunov function derivative, 

 

𝑉̇ = (𝜃𝑓 𝑥 
𝑇𝐴𝑥 − 𝑥 

𝑇𝐿4𝐶𝑥 ) (17) 

We choose 𝐿4 such that 𝐿4𝐶  becomes positive semidefinite 

leading to −𝑥 
𝑇𝐿4𝐶𝑥 ≤ 0. Note that, 𝐿4𝐶  cannot be negative 

definite given the structure of 𝐶 . Now, from the Observation I it 

is known that 𝐴 is negative semi-definite. Therefore, 

𝜃𝑓 𝑥 
𝑇𝐴𝑥 ≤ 0 as the function 𝑓  and unknown parameter 𝜃 are 

always positive from their physical properties. Therefore, from 

this analysis we can conclude that 𝑉̇ = −𝑥 
𝑇𝛽𝑥 ≤ 0. This 

proves the boundedness of the estimation errors 𝑥 , 𝜃 and 𝐵̃𝑀 . 

Next, we attempt to analyze the asymptotic convergence of the 

errors to zero. To do so, we use a “Lyapunov-like” analysis 

based on Barbalat’s lemma [26], [27].   

 

Asymptotic convergence of  𝑥 : 

In this part, we will prove that 𝑉̇ → 0 as 𝑡 → ∞ using 

Barbalat’s lemma. Lyapunov function candidate 𝑉 is lower-

bounded by choice and it is shown in the previous analysis that 

𝑉̇ ≤ 0. Uniform continuity of 𝑉̇ is equivalent to boundedness of  

𝑉̈ which can be written as: 

 

𝑉̈ = −2𝑥 
𝑇𝛽𝑥̇ , where 

𝑥̇ = 𝜃𝑓 (𝑥 )𝐴𝑥 − 𝜃𝑓 (𝑥 )𝐴𝑥 + [0, … ,0, 𝐵̃𝑀]
𝑇𝑢− 𝐿4𝐶𝑥  

 

Now, 𝑥 , 𝜃 and 𝑓  are bounded from the physical properties of 

the system. Input 𝑢 is also assumed to be bounded. From 

Lyapunov analysis it is shown that 𝑥 , 𝜃 and 𝐵̃𝑀 are bounded. 

Therefore, 𝑥  and 𝜃 are also bounded. So, it can be concluded 

that 𝑥̇  is bounded which in turn proves that 𝑉̈ is bounded. 

Therefore, from Barbalat’s lemma it can be concluded that 

𝑉̇ → 0 as 𝑡 → ∞. Then, using  𝑉̇ expression (17), it can be 

shown that 𝑥 → 0 asymptotically.  

 

Asymptotic convergence of  𝜃 and 𝐵̃𝑀: 

In this part, we will prove that 𝑥̇ → 0 as 𝑡 → ∞ using 

Barbalat’s lemma. It is already shown that 𝑥 → 0 as 𝑡 → ∞. 

The limit, 

 

∫ 𝑥̇  𝑡
∞

 = lim𝑡→∞ 𝑥 (𝑡) − 𝑥 (0) = −𝑥 (0)  

 

exists and is finite. With the signals already shown bounded in 

the previous step and additionally assuming 𝑢̇ bounded, it can 

be shown that  𝑥̈  is bounded. This leads to the fact that 𝑥̇ → 0 

as 𝑡 → ∞. Considering the 𝑥̇  expression with 𝑥 → 0, 

 

𝑥̇ = 𝜃𝑓 (𝑥 )𝐴𝑥 + [0, … ,0, 𝐵̃𝑀]
𝑇𝑢 

 

As 𝑥̇ → 0, the expression boils down to: 

 

𝜃𝑓 (𝑥 )𝐴𝑥 + [0, … ,0, 𝐵̃𝑀]
𝑇𝑢 = 0 

⇒ 𝑓 (𝑥 )𝐴𝑥 𝜃̃+ [0, … ,0, 𝑢]
𝑇 𝐵̃𝑀 = 0 

⇒ [[𝑓 (𝑥 )𝐴𝑥 ] [0, … ,0, 𝑢]𝑇 ]𝑀× [
𝜃
𝐵̃𝑀

]
 × 

= 0 
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⇒ 𝑋𝑀× [
𝜃
𝐵̃𝑀
]
 × 

= 0, with 𝑋 = [[𝑓 (𝑥 )𝐴𝑥 ] [0, … ,𝑢]𝑇 ] 

⇒ [𝑋𝑇𝑋] × [
𝜃
𝐵̃𝑀
]
 × 

= 0   

 

It can be concluded that 𝜃, 𝐵̃𝑀 → 0 as 𝑡 → ∞ under the 

condition |𝑋𝑇𝑋| ≠ 0, which leads to the condition 𝑢 ≠ 0. Note 

that, the convergence of the parameter estimates to their true 

values depends on certain persistently exciting input current. 

 

Note: The analysis on asymptotic convergence of  𝑥 , 𝜃 and 𝐵̃𝑀  

is carried out based on the assumption that Observer I provides 

accurate estimate of  the surface concentration. However, there 

will always be a steady-state error in reality. Although this 

steady-state error can be neglected for all practical purposes, 

𝑥 , 𝜃 and 𝐵̃𝑀  will converge to a small nonzero  value in reality.   

 

Systematic Approach for Observer Gains Selection 

Selection of observer gains in this des ign is of great 

importance for the convergence of state and parameter 

estimates. A systematic approach for gain selection is provided 

for implementation of this overall adaptive scheme. 

 

Observer I: 

Step I: Select an arbitrary positive value for gain 𝐿  and then 

correspondingly select 𝐿3 satisfying the condition  

𝐿 |𝑥 𝑀|𝑚𝑎𝑥|𝑢|𝑚𝑎𝑥 < 𝐿3 where |𝑢|𝑚𝑎𝑥 is the guess of 

maximum possible current and |𝑥 𝑀|𝑚𝑎𝑥 is guess of maximum 

possible value of state error. Check the convergence rate and 

steady-state value of the estimation errors 𝑥 𝑀 and 𝑅𝑓. Increase 

gain 𝐿  and correspondingly 𝐿3 until acceptable convergence 

rates and steady-state errors are achieved. 

Step II: Selection of 𝐿  is independent of other gains. Initialize 

𝐿  by an arbitrary high value and increase it until acceptable 

convergence rate of 𝑥  and steady-state error are achieved. 

 

Observer II: 

Step III: Select an arbitrary 𝐿4 = 𝜎[1, . . ,1]
𝑇  with a scalar 

parameter 𝜎 > 0 such that 𝐿4𝐶  is positive semidefinite. Then 

keep increasing σ until acceptable convergence rate is achieved. 

Step IV: For a given selection of 𝐿4, parameter adaptation law 

gains 𝐾  and 𝐾  should be tuned together. This is  because these 

two gains are observed to have a strong inter-dependence. 

Initialize 𝐾  and 𝐾  with an arbitrary small positive numbers 

and then keep increasing both of them in steps until acceptable 

convergence rates are achieved. The user should take care that 

the selection of 𝐾  and 𝐾  should not significantly impact the 

𝑥  convergence given by 𝐿4. 

RESULTS & DISCUSSIONS 
In this section, the performance of the adaptive observer 

scheme is demonstrated via simulation studies. In this study, the 

SPM model with both positive and negative electrode dynamics 

is used as plant model. Model parameter values  of Li-ion cell 

have been taken from [9] and [22]. To emulate realistic 

scenario, 1 mV and 1
o
C variance noise is added to the voltage 

and temperature measurement, respectively. A noise component 

of 1 mA is also added to the current measurement. Besides 

emulating realistic measurement scenario this noise component 

also helps in maintaining persistently exciting input signal.  

 

 
Figure 4: Temperature and Voltage Estimation Performance 

 

 
Figure 5: Bulk SOC and Surface Concentration Estimation 

Performance 

To evaluate the error convergence, state and parameter 

estimates are initialized with different initial conditions than 

that of actual plant. The performance of the state and parameter 

estimation is shown in Figures 4, 5 and 6 for a repeated UDDS 

(Urban Dynamometer Driving Cycle) cycle. UDDS is 
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originally a velocity profile for testing a full-size vehicle, from 

which a scaled-down current profile is constructed. 

 

 
Figure 6: Parameter Estimation Performance 

In Fig. 4, it is clearly shown that the temperature observer 

is able to estimate the actual temperature with negligible 

steady-state error despite noisy measurement and uncertainties. 

In Fig. 5, it can be seen that Observer I is able to estimate 

surface concentration (also the voltage given in Fig. 4) with a 

fast convergence rate and negligible steady-state error. Note 

that, this fast convergence is desired as the surface 

concentration estimate is being used by Observer II to estimate 

the rest of the states and parameters.  

The bulk SOC estimation performance is also shown in 

Fig. 5. Note that, initially the convergence rate is much faster 

although it slows down later. This is because the surface 

concentration observer (Observer I) has a much faster 

convergence rate than the Observer II that estimates the rest of 

the node concentrations. Therefore, all other estimated node 

concentrations except for the surface one, converge in a slower 

manner leading to slower convergence of the bulk SOC. This 

difference of the convergence rates of the two observers is due 

to our particular selection of gains. Parameter estimation 

performance is shown in Fig. 6 from which it can be concluded 

that the estimates converge with a reasonable accuracy. The 

convergence rates for the parameter estimates are much slower 

than those of the states. However, this should not be a problem 

due to the time scale separation between states and parameters. 

One observation we made is that the overall performance of the 

adaptive scheme degrades with high initial error 𝐵̃𝑀 . Higher 

initial error in that particular parameter may lead to the 

divergence of the estimates. This is one of the limitations of this 

scheme. 

CONCLUSION 
In this paper, an adaptive observer design is presented for 

simultaneous state-parameter estimation of a Li-ion cell. This 

design considers the coupling between electrochemical and 

thermal dynamics of the cell. The observer design is split into 

two parts to simplify the design. The parts are designed 

separately based on Lyapunov’s stability analysis and a 

systematic approach is provided for the selection of the gains. 

Simulation studies show the effectiveness of the design where 

the states and parameters are estimated with a desired 

convergence rate and accuracy.  

However, it should be mentioned that there are some 

limitations for this adaptive observer scheme. Firstly, the 

stability of the overall scheme is not guaranteed under zero 

input current which essentially translates to requiring persistent 

excitation of the input. Next, high initial error in 𝐵𝑀  estimate 

degrades the performance of the scheme.  

As future work, extension of this design can be evaluated 

with estimation of other physical parameters of the cell 

including other uncertainties. Moreover, experimental studies 

are planned on a physical Li-ion cell to validate this design. 
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